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A weak solution for a class of the elliptic systems with even functional
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ABSTRACT We get one result which shows the existence of at least one weak solution
for a class of the elliptic systems involving subcritical Sobolev exponents nonlinear term
with even functional on the bounded domain with smooth boundary. We get this result
by variational method and critical point theory.
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1. INTRODUCTION

Let €2 be a bounded domain of R™ with smooth boundary, n > 3, «, 3, v, p, q are real
constants. In this paper we investigate existence of weak solutions for the following class

of the elliptic systems with Dirichlet boundary condition

—Au  =au+ fv+ F,(u,v) in Q, (1.1)
—Av = fBu+yv+ F,(u,v) in €,
u =v=_0 on Of).
Here
F ) = P q7
(1) =~ fup]

2n
n—2"

where p, ¢ > 1 are real constants, 2 < p+ ¢ < 2%, 2* =

In this paper we consider a class of elliptic systems involving subcritical Sobolev expo-
nents nonlinear term with even functional. Since the pioneering work on the subject in [1],
these problem have been investigated in many ways. For a survey on the scalar case we
recommend the paper [2] and the references therein. For the system case we recommend

the paper [3].
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Indeed weak solutions of (1.1) correspond to critical points of the continuous and

Frechét differentiable functional

_ 1 2 2 _ 2 _ 2 _/ 2 P,
I(u,v) = 2/Q[|Vu| + |[Vo|]? — au® — 2Buv — yv?|dx Qp—|—q|u| |v]|9dx

Qap(u,v) — /Q &

p+q
where Qa4 (u,v) = 1 [L[|Vu|? + |[Vv|? — au® — 2Buv — yv*]dz. The crucial point in this

[ul|v|*de,

paper is that the nonlinear term of (1.1) has subcritical exponents 2 < p+¢q < 7127”2 When
2 < p+q < 25, the embedding W2(Q) — LP+4(Q) is compact, where Wy *(Q) is a
Sobolev space, so we can assure that the associated functional of (1.1) satisfies the (P.S.)
condition.

Let Ay < Mg < -+- < A\ < -+ be eigenvalues of the eigenvalue problem —Au = Au
in Q, u =0 on 09, and ¢ be eigenfunctions belonging to eigenvalues A\, £ > 1. Let

W32(2) be a Sobolev space with the norm
2 2
||u|\W01.2(Q) = /Q |Vul*dz.
Let E = W,?(€) x Wy*(Q) be a Hilbert space endowed with the norm

||(u7 U)”zE = ||u“?4/0112(9) + ”U”f/vév“’(g)'

Let A be ( g g > € Mayo(R). Let us set
Hy, = span{¢i| — A¢; = Nidi},
o (s B,7) = Det(NI = A) = (N — ) (A =) = B~
Let nii and ni be eigenvalues of the matrix ( Ai __g A __g ) € Msya(R), i. e,

n>1\i = %{QAZ -7 Q- \/((2)‘1 - Oé))2 - 4QAi(a»/3»7)}»

1
= 5{2)\2‘ —y—a+ /(2N — 7 — )2 —4gy(a, B,7)}-

We are looking for weak solutions of (1.1) in E. The weak solutions in E satisfies

/[(—Au)z + (—Av)w — auz — frw — Puz — yow|dz
Q

2 2
= 2 olrz + =L fuploft~tulds = 0
aPt+q pP+q
for all (z,w) € E.

Our main result is as follows:

THEOREM 1.1.  Assume that p, ¢ > 1 are real constants, 2 < p +q < 2*, 2* = 2

and «, ( are real constants satisfying the following:,
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(i)a>0,>0,v<0,—y>a,

.. A — —p
(i) e o) =det (MG
and
(iii) qx, (o, B,7) > 0, Vi > 2m + 1.

Then (1.1) has at least one nontrivial weak solution.

) <0 for 1<i<2m,m>1

For the proof of Theorem 1.1 we use variational method and critical point theory. In
Section 2, we introduce eigensubspaces spanned by eigenfunctions and prove that the
corresponding functional of (1.1) satisfies the (P.S.) condition. In Section 3, we obtain

some variational linking inequalities of I(u,v) and prove Theorem 1.1.

2. VARIATIONAL APPROACH ON EIGENSPACE

Let (c},,d},) and (c} ,d3,) be the eigenvectors of ( Ai—a

A DY __g ) € Mayo(R) cor-

responding to 77;1, and n/\i respectively. Let us set

Dy, = {(a,8,7) € R*| qr,(a, B,7) <0 for 1<4<2m, m>1,
ax (o, B,7v) >0, Vi > 2m + 1},
Dy = Dyn{—y<a}
DY, = Dyn{-vy>a},
By, = {(c¢,d¢) € E| (c,d) € R*,¢ € H},
L = {(cho.d\o) € Bl 6 € Hy),
B = {(6,d0)€ E| 6 € Hy),
H¥(a,B,7) = (&
H (a,8,7) = (@nl «E),) @ (@n2 <E3),
H'(a,8,7) = (@nl E},) ® (&, 2 —OE/\ )-

nk >0E/\-) @ (@n2 >OE§-)7

Then H (o, 8,7), H (a, 3,v) and H°(«, 3,7) are the positive, negative and null space
relative to the quadratic form @, 5~ (u,v) in E. Because (\; — a)(\; —v) — 52 # 0,

H(a, 3,7) = {0}.

LEMMA 2.1.  Assume that p, ¢ > 1 are real constants, 2 < p+ q < 2*, 2* = %’2 and

the conditions (i), (ii) and (iii) of Theorem 1,1 hold. Let (a, 3,v) € R®. Then
(i) E), and E3 are eigenspace for the operator ]Waﬁv, Malg,},(u v) = (—Au—au—ﬁv, —Av—

2

Bu — yv) associated with QQqg, with eigenvalues 3

(i) E), and E3 generate E.
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(iii) Let @ > 1. Then we have that

lim o ) - Qp, )
(a,8,7)—(a0,80 ’YO) ( 0 ’Y) 77,\( 0: o 70)

and

lim 2 (a0, B,7) = 12 (a0, Bos Y0)-
() 1B gy (2B 7) = 13, (@0, o, 20)

uniformly with respect to i € N.
Proof. The proof can be obtained by easy computations. .

Let us define

Vul? + |Vv|?)d
Cpe(Q)=  inf Jo(IVul’ + Vel 2)  for (u,v) € E. (2.1)
(u,v)EE\(0,0) (fﬂ |u|p|@|ng;)m

LEMMA 2.2. Assume that p, ¢ > 1 are real constants, 2 < p + q < 2* and the
conditions (i), (it), (#ii) of Theorem 1.1 hold. Then if ||(u,,vn)||r — o0 and (up,vy), is

a sequence such that

f [(p+q‘un|p 1|Un|q7p+q|un|p‘vn‘q b - (un, vn) = p+q|un|p|vn|]

—0,
(|t o) ||
then there exist (up,, v, )n and (z,w) € E such that
-1 1
(p+q|un|p ]9, p+q[u Plun]?) —(sw) €E (th, s Vn,) — (0,0).
([ (s vn) | 5 ’ [ (un, vn, )|l ’

Proof. We note that

2p —1 2q —1 4 /
——|up [P | Ty, + Uy |P|Up |7 0y |de — —— Uy |P |0y |Tdx
b o 2P e = [ Pl

M 2 4 /
< Up ||V |T + Up[Plvp|T)]de — —— [ |un|P|v,|%de
Sttt + 2wl e =~ [ funPlo,

2 2 4
<22 )/hM%M%w
P+q p+q P+q Ja
2 4
<0, W(Q)( g _ M, v) B, 2<ptq<2.

+q p +q p+gq
It follows that

fﬂ[p+q|un|p 1|Un|qun+ L up |Plon|?™ lvn]dx

” p+q e
[l (v, vn) || 2
2q
< Cp«f”(ﬂ)(—qﬂLF)Hll(um ) [15
Un, Un) || pra—1
< ol (o,

” (um Un) ”E
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where [ = —1 + p+q L' < 0. When 2 < p+gq < =5, the embedding 01’2(9) — LPT1(Q)

is compact. Thus there exist (up,,vp, )n such that

Sl lun, [P + 2 un, [Plon, " op, Jda (22)
H(Uh",vhn)HE
2q 1 (uh » Un )
(— Up, [P~ o, |, lun,, [P|vn, |T) -+ 5 —dx — 0.
-5 ol g A T
It follows that there exists (z,w) € E such that
(P+q > ptq ) _ (z,w) c E, (uhn7 Uhn) N (07 0)
| (un,> vn,)l 5 [l (uns 1) 2

LEMMA 2.3.  ((P.S.)condition)
Assume that p, ¢ > 1 are real constants, 2 < p+ q < 2* and the conditions (i), (i1), (ii7)
of Theorem 1.1 hold. Let i € N and (v, Bo,7) € OD),. Then there exist a neighborhood
W of (v, Bo,70) such that for any
(o, B,7) € W\ Usen, (c0.f0,70)€0D} D)., the functional I(u,v) satisfies (P.S.) condition on
E.

Proof.  Let i € N, (ao,5,7) € 9D}, and W be a neighborhood of (ao, fy,7). Let
(o, B,7) € W\ Uie, (ap,porm0)cony D4, Let ¢ € R and (un,v,)n C E be a sequence such
that I(uy,,v,) — ¢ and DI(u,,v,) — 6, 8 = (0,0). We claim that (u,,v,), is bounded.

(un,vn)

T~ SinCE

By contradiction we suppose that ||(u,, vs)||r — oo and set (uy, vy,) =
(U, Un )y is bounded, up to a subsequence, (i, v, ), converges weakly to some (@, v) in E.

Let (a, 3,7) € W\ Usen, (c0,60.70)€0D}, D;.. Since DI(uy,v,) — 0, we have

o lun|P™ l‘vn‘qu”+p+q|un‘p|vn|q vn
(| (wn, vn) |
Since DI(uy,v,) — 0 and I(uy,v,) — ¢, we also have

DI(tp,vp) - (tn,vy)

(_A - A)("fmﬁn) - <p+q

(Ui, Un)) — 0. (2.3)

| (ms ) |
21 (U, ) fQ p+q|un‘p o T, +- p+q|un|p‘vn|q Lo, — p+q\un\p|vn| )dx 0
= — — U.
[[(tn; on) | 2 [[(tns on) 2
Thus we have
1 Ly — 4
fQ(p+q\un|P || Ty, + p+q\u v, |7 10y, p+q|un|P|vn|q)dx e (2.4)
| o) ||
By Lemma 2.2, (2.2) and (2.4), there exist a sequence (up,,, Up, ), such that

Jolgg lun, 17 on, |Tun,, + FZlun, Plon, |7 o, )da

Il (uh, > Vh,)

E
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and
(tn,,, Vh,)
Il (s vn )|l
Thus we have (4,0) = (0,0), which is absurd because ||(@,?)||g = 1. Thus (un,vn)s is

— (0,0).

bounded. Thus (u,,v,), converges weakly to some(u,v). Let P_ : E — H (a, 3,7) =
®uii<0y 1§i§2mE/{ and P, : E — H+(0m877) = (@p§_>0,1 gngmEi) D (@u;i>0, i22m+1E)1\1-)
denote the orthogonal projections. We claim that (u,,v,) converges to (u,v) € E =

H™ (o, 3,7) ® H (a, 8,7) strongly. Since DI(u,,v,) — (0,0), we have

(DI(tn, V), (Un,vn)) = /Q[(—Aun)un + (—Avy)v, — aufl — B, — Bunvy, — 'yvfl}dx

2p _ 2q _
—/(p i qlun|p Yo | T, + pry q\un|p|vn|q Yop)dz — 0.
Q

Since (uy,v,) converges to (u,v) weakly, we have

lim (DI(tn, vy), (Un, vn))

n—oo

= lim (| Py (v = 1P (v [3)
2 2

= Jim () (S o +

n—oo Jo Pt q p+q

= nlLHOIO(HPﬂL(UmUn)H%‘ - ”P—(unavn)HZE)

2 2
— [l ol 2Ll o) = .
oaPtq p+yq

|un|p|vn|q_1vn)dz)

It follows that

Jim (1| Py (un, va) [ = 1P- (s v) )

2 2
= [t ol ol e,
QDPtq p+q
Thus limy,—o0 (|| Py (tn, V) |5 = || P (tn, vs) ||%) converges strongly to || Py (u, v)||%—||P-(u,v)||%-
Thus lim,, H(umvn)”2 = hmn—*w(||P+(umUn)H% + HP_(un,vn)H%) = ||P+(u,vn)||§5 -

|| P-(u,v)||%. Thus (wn,,v,), converges strongly to (u,v) such that
DI(u,v) = lim DI(uy,v,),

so (u,v) is a critical point of I. .

3. PrROOF OF THEOREM 1.1

We shall find critical points of the functional I(u,v) € CYY(E, R),
1 2

I(u,v) = —/[|Vu|2 + Vol — au? — 2Buv — yv?]dr — —/ [wl?|v|?dx (3.1)
2 Q p+q Q

9
= Qapy(u,v) - —/ ulP|v|dz,
@0 P+qJa
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where Qg (u,v) = 3 [,[[Vul* + [Vo[* — au? — 2Buv — yv?]dz. We note that
H (o, 8,7) = ((@1<j<omByj),
H*(a,8,7) = ((@1<jcomER;) ® (@jnomi1 Ey;) @ (©j32m1Exy))-
Let us set
S
B,

{(u,v) € E| ||(u,v)||p = o},
{(u,v) € E| [[(u,v)||£ < o},
Q = BrnNH (a,B,7) ® {r(ug,v)| 0 <r <R,

(ug,v9) € (@1§j§2mE,2\j) S (@j22m+1E,{j)7 Qap~(ug,v9) = 1}

LEMMA 3.1.  Assume that p, ¢ > 1 are real constants, 2 < p+ g < 2* and the con-
ditions (i), (i1), (i) of Theorem 1.1 hold. Let i € N and (ao, o, v0) € OD),. Then there
exist a neighborhood W of (v, (o, Y0) such that for any («, 3,7) € W\Uien, (ag,8010)c0D,

D), there exists a constant ¢ > 0 such that

in I(u,v) >0, inf I(u,v) > —o0,
(uw)ESeNH* (a,8,7) BoNH*(a,8,7)

where B, is a ball centered at (0,0) with radius o > 0.

Proof.  Let (a, 3,7) be any element of W\Uien, (ag,8010)cam; D, Let (u,v) € H (a, 8,7).

Then we have

1 1 1, Mo
Quanf0) =3 [ (V6P + (907 = aa? = 2600 — 907 > Janin 22, 222y, ).
By (2.1), we have

2
I,) = Qo= / fuf?l|7dz

> m {17A1 %"L“ SRR ) = —— (Ca(0) 5 ) .
p+q
Since 2 < p + ¢ < ;%5 and min{ i\*l, i;;’ll} > 0, there exists a small constant o > 0 such
that if (u,v) € Sy N H*(a,ﬁ v), then I(u,v) > 0. Moreover if (u,v) € B, N H*(«, 3,7),
then I(u,v) > —=2-(Cpg ()~ %" (u, )| > —oc0. .

LEMMA 3.2. Assume that p, ¢ > 1 are real constants, 2 < p+ q < 2* and the con-
ditions (i), (i1), (i) of Theorem 1.1 hold. Let i € N and (ay, o, v0) € OD),. Then there
exist a neighborhood W of (v, (o, Y0) such that for any («, 3,7) € W\Uien, (ag,800)c0D
D,

there exist a constant R > 0 and an element (ug,v9) € (1<j<omE3;) © (Bjzomi1E};)
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with Qa,p~(uo,vo) = 1 such that if (u,v) € 0Q = d(Br N H™ (a, 3,7) ® {r(ug,v0)| 0 <
r <R, (ug,v0) € (Br<jcamER;) ® (DjzamEL;), Qaypq(uo,v0) = 1}, then

sup I(u,v) <0, sup I(u,v) < 0.
(u,w)€0Q (uv)€Q

Proof.  Let (o, 3,7) be any element of W\ Usen, (c0,80.70)€0D}, D). Let us choose an
element, (ug, v0) € (D1<j<amE3;) O (Bj>2m41 Ey;) and (u,v) € H™ (v, 8,7) @ {r(uo, vo)| r >
0, (ug,v0) € (Br1<j<omER;) © (Bjsom1EL;), Qasy(uo,v9) = 1} Then (u,v) is of the
form (u,v) = (z,y) + r(uo, vo), (z,y) € H (a, 8,7) and (ug,v0) € 0B1 N (®r1<j<amE3;) ©
(@jZQmHEl{j) with Qa5 (w0, v9) = 1, 7 > 0. Then we have

¢ 2(r+1
I(t(u,v)) = — / [[Vul|? + |Vo|* — au?® — 2Buv — yv?]de — / |ulP|v|?dx

12 12
= 35 [[Vz]* + |[Vy|> — ax® — 28zy — vy?]dr + 57“2
Q
otpta
T / |z + ruo|P|y + rvo|tda
Q
2, 2t

5" T i a /Q |z + rug|P|y + rvo|Uda.

Because Qap4(%,y) < 01if (z,y) € H (o, f,7). Since 2 < p + ¢, I(t(u,v)) — —o0
as t — oo. Thus there exists a large number R > 0 such that if (u,v) € 0Q =
(Br N H (a,B,7) @ {r(ug,v)| 0 < r < R, (ug,v9) € (BrgjcomER;) @ (®j2mi1BY)),
Qa5 (0, v0) = 1}), then I(u,v) < 0. Thus we have sup, ,)eaq I (u,v) < 0. Moreover if
(u,v) € Q, then I(u,v) < %2 < 00. Thus sup(, ,yeq (v, v) < 0.

Proor orF THEOREM 1.1
Let i € N, (a,8,7) € W\ Uien, (ap.p0m0)cop;, D3,- We note that the functional I is
continuous and Fréchet differentiable on E. ]_;iy Lemma 2.3, I(u,v) satisfies the (P.S.)
condition. By Lemma 3.1 and Lemma 3.2, there exist constants ¢ > 0 and R > 0 such

that

inf I(u,v) >0, inf I(u,v) > —00
(uw)eSeNH T (a,8,7) B,NH*(a,8,7)
and
sup I(u,v) <0, sup I(u,v) < 0.
(u,v)€0Q (uv)€Q

Let us define
I'={yeC(Q,E)|y=1idon 9Q}
and

c=inf sup I(h(u,v)).
hel’ (uw)eQ
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By the classical Deformation Lemma (cf. Theorem A.4 in [4]), ¢ is a critical point of

I(u,v) such that

0< I(u,v) < ¢c=I(u,v) < sup I(u,v).

inf
(u,0)€SeNHT (0, 8,7) (u,v)€Q

Thus (1.1) has at least one nontrivial solution.
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